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Abstract: Inflammatory responses are frequently associated with the expression of 

inflammatory cytokines and severe osteoclastogenesis, which significantly affect the 

efficacy of biomaterials. Recent findings have suggested that interferon (IFN)-γ and 

zoledronate (Zol) are effective inhibitors of osteoclastogenesis. However, little is known 

regarding the utility of IFN-γ and Zol in bone tissue engineering. In this study, we 

generated rat models by generating critically sized defects in calvarias implanted with an 

alpha-tricalcium phosphate/collagen sponge (α-TCP/CS). At four weeks post-implantation, 

the rats were divided into IFN-γ, Zol, and control (no treatment) groups. Compared with 

the control group, the IFN-γ and Zol groups showed remarkable attenuation of severe 

osteoclastogenesis, leading to a significant enhancement in bone mass. Histomorphometric 

data and mRNA expression patterns in IFN-γ and Zol-injected rats reflected high  

bone-turnover with increased bone formation, a reduction in osteoclast numbers, and tumor 

necrosis factor-α expression. Our results demonstrated that the administration of IFN-γ and 
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Zol enhanced bone regeneration of α-TCP/CS implants by enhancing bone formation, 

while hampering excess bone resorption. 

Keywords: bone tissue engineering; α-TCP/CS; inflammatory response; RANKL; TNF-α; 

osteoclastogenesis; interferon-γ; zoledronate 

 

1. Introduction 

The use of composites of extracellular matrix-like collagen and calcium phosphates as bone fillers 

for orthopedic and stomatology surgery has increased in recent years, since they promote cell adhesion 

and differentiation and are degraded under physiological conditions [1]. Results from our previous 

study found that materials created with porous α-tricalcium phosphate (TCP) and collagen sponges (CS) 

could be used to treat bone defects. In addition, the resorbable α-TCP/CS implants were replaced with 

new bone without any side effects [2]. However, α-TCP/CSs are osteoconductive materials that act as 

space maintainers during bone formation, and their interactions with molecules that stimulate 

osteogenesis or inhibit osteoclastogenesis are needed to induce bone regeneration in large bone defects. 

In general, late-stage immunogenic and inflammatory responses during biomaterial implantations 

include chronic inflammation, granulation tissue development, foreign body reactions, and fibrosis/fibrous 

capsule development [3]. The presence of mitogens, chemoattractant cytokines, growth factors, and 

other bioactive agents generates a rich milieu of activating and inhibitory substances capable of 

modulating macrophage activity, which lead to severe osteoclastogenesis and affect bone regeneration [4]. 

The results of several studies have suggested that activated osteoclasts and osteolysis caused by the 

overexpression of inflammatory cytokines are the main causes of implantation failures [5,6]. Immunogenic 

responses elicit high levels of inflammatory cytokines involved in osteoclast differentiation, and 

macrophage infiltration occurs in the fluid and fibrotic tissue surrounding implants [7–9]. Inflammatory 

cytokines such as tumor necrosis factor (TNF)-α or interleukin (IL)-1β function in collaboration with 

receptor activator of nuclear factor-kappa B ligand (RANKL) and dramatically enhance osteoclast 

precursor maturation and migration [5,10]. Osteoclasts and associated acute inflammatory reactions 

promote material degradation and defect repair at the early-recovery stage [11], but severe 

osteoclastogenesis accompanied with an inflammatory response at the late-recovery stage may 

significantly inhibit bone regeneration [12]. 

Zoledronate (Zol) hampers osteoclastic bone resorption and is an important drug for the treatment 

of various bone diseases. It has previously been shown in vivo that the local treatment of β-TCP 

granules with Zol can increase implant fixation by improving osteogenesis and hampering bone 

resorption [13]. The beneficial effects of Zol on enhancing osteocyte function, accelerating the 

generation of new bone, and lowering the bone-resorption activities of osteoclasts and macrophages 

are clear. Zol treatment during bone-material implantation may serve as an effective modulator of 

inflammatory responses caused by macrophages, thereby reducing excess inflammatory cytokine 

expression and osteoclastogenesis. 

In addition, interferon (IFN)-γ, a cytokine released by TH1 cells during adaptive immunity, is a 

proinflammatory cytokine that can cause classically activated macrophages to secrete inflammatory 
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cytokines [14]. However, recent findings have suggested that IFN-γ is a critical regulator of bone 

resorption and is required for the osteogenic differentiation of mesenchymal stem cells [15–18]. 

Although the role of IFN-γ in vivo is still controversial [19], IFN-γ may play an important role in bone 

formation and reducing inflammatory bone resorption in vivo, having the potential to enhance material 

implantation efficacy [17,20]. 

The local application of IFN-γ or Zol to bone microenvironments may be expected to modulate 

immunogenic responses, osteogenesis, and osteoclastogenesis. In this study, we showed that IFN-γ and 

Zol administration can enhance bone formation in a rat calvaria defect model with α-TCP/CS implants, 

which were generated using a dehydrothermal cross-linking method. 

2. Results 

2.1. Material Observations and Measurements 

In SEM images, we observed that collagen fibers were intertwined with α-TCP in the α-TCP/CSs 

(Figure 1b). Analysis of infrared (IR) spectra results from α-TCP powders and α-TCP/CS materials 

revealed the presence of α-TCP bands at 1010 and 543 cm−1. The bands in the 1180–1140 cm−1 range, 

together with those at 610 and 595 cm−1, are attributable to the SO4
2− group [21]. Characteristic IR 

spectra were observed for α-TCP/collagen and α-TCP/CS show characteristic IR spectra, with amide-I 

absorption bands detected at 1650 cm−1, amide-II bands detected at 1560 cm−1, and a set of three 

weaker bands representing amide-III vibration modes centered at 1245 cm−1 [22] (Figure 1c). Figure 1d 

shows the X-ray diffraction (XRD) patterns of α-TCP/CS, the original α-TCP particles, and collagen. 

A comparison of the scatter-plot data of the synthesized α-TCP particles with that of α-TCP data 

registered with the Joint Committee on Powder Diffraction Standards confirmed that these peaks 

appeared at the same angles. 

 

Figure 1. Alpha-tricalcium phosphate (α-TCP)/collagen sponge (CS) material observations 

and measurements. (a) Visual image of an α-TCP/CS; (b) SEM image of an α-TCP/CS. 

The white asterisk is overlaid on a collagen fiber, and the white arrows point to an α-TCP 

particle; (c) FTIR spectra recordings of an α-TCP powder, an α-TCP/CS; and a CS  

(d) XRD patterns of α-TCP/CS particles, α-TCP particles, and a CS. 
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2.2. Effect of Local IFN-γ and Zol Administration on Bone Turnover after Material Implantation 

We examined morphometric changes occurring after material-implantation surgery (Figure 2a).  

In rats not administered IFN-γ or Zol, the micro-computed tomography (CT) images and structural 

parameters of rat calvaria showed large bone defects at eight weeks following surgery, with a large 

area of low-density tissue (Figure 2b). The average bone volume in the bone defects decreased from 

44.65% (six weeks) to 37.2% (eight weeks), and the bone mineral density (BMD) decreased from 

511.9 to 458.6 mg/cm−3 (Figure 2c). However, significantly higher bone volumes (79.7%, Zol,  

p < 0.01; 67.1%, IFN-γ, p < 0.01) and BMDs (738.3 mg/cm−3, Zol, p < 0.01; 660.3 mg/cm−3,  

IFN-γ, p < 0.05) were observed at Week 8 following Zol or IFN-γ administration at four weeks  

post-implantation, compared with the control group (Figure 2c). 

 

Figure 2. In vivo models generated with critically sized defects in rat calvarias filled with 

α-TCP/CS material. (a) After four weeks, rats were administered interferon (IFN)-γ, and 

bone regeneration was compared with that occurring in no-drug-treated control rats and 

zoledronate (Zol)-injected rats; (b) Micro-computed tomography and bone-mineral density 

(BMD) images of rat calvarias defects. Scale bars = 10 mm (long bars) or 2 mm (short 

bars); (c) Post-operative bone volumes/tissue volumes (BV/TV) and BMDs were measured 

each week. The data shown represent the mean ± standard deviation (SD; n = 4).  

* p < 0.05, ** p < 0.01 (Tukey–Kramer method). 
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Figure 3. Bone-turnover capacities of material implants following drug treatment.  

(a) Von Kossa staining. Brown staining represents bone tissue, and white arrows show the 

α-TCP/CS particles in the bone defect. Broken squares represent the magnified areas;  

(b) Alkaline phosphatase (ALP) staining. Black staining represents ALP-positive tissue;  

(c) Alp mRNA expression in bone defects. Data show the mean ± SD (n = 4). # Control vs. 

IFN-γ; * Control vs. Zol; *,# p < 0.05; **,## p < 0.01 (Tukey–Kramer method);  

(d) Fluorescence labeling analysis. Calcein (blue staining: new bone growth at 4–6 weeks 

post-implantation) and tetracycline (green: new bone growth at 6–8 weeks) labeling of 

regenerative bone tissue in calvarial defects. Scale bars: von Kossa = 1.8 mm and 120 μm 

(magnified areas), ALP staining = 120 μm, fluorescence labeling = 100 μm; (e) Quantification 

of labeling fluorescence. The data show the mean ± SD (n = 4). * p < 0.05, ** p < 0.01 

(Tukey–Kramer method). 
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We then studied bone regeneration and metabolism using the von Kossa staining method, where the 

dark brown regions represent the bone tissue (Figure 3a). By von Kossa staining, we found that the 

amount of bone tissue decreased from Weeks 6–8 in the control group, while clearly distinguishable 

bone turnover occurred in the Zol- and IFN-γ-injection groups. In addition, von Kossa staining showed 

that in the eight-week control and Zol groups, considerable α-TCP/CS particles remained in the defect 

areas (Figure 3a, white arrows). However, in the eight-week IFN-γ-injection group, a reduction of  

α-TCP/CS particles was observed in the defect areas (Figure 3a, white arrows). 

We next studied alkaline phosphatase (ALP) expression using immunohistochemistry to assess the 

bone turnover capacity in each group (Figure 3b). Weak ALP expression was observed with the  

six- and eight-week control groups. The six- and eight-week IFN-γ and Zol groups showed clear ALP 

expression, indicating that the osteoblasts facilitated bone defect repair (Figure 3b). In agreement, the 

Alp mRNA expression level in the Zol and IFN-γ injection groups was significantly increased at six and 

eight weeks post-implantation, indicating that osteogenesis was increased in the Zol and IFN-γ 

injection groups, compared to the control group (Figure 3e). 

Fluorescence imaging results indicated that a significantly higher mineral deposition rate occurred 

in the IFN-γ- and Zol -treated defects, compared to that observed in control rats receiving no treatment.  

In addition, the IFN-γ-treated group showed significantly higher mineral apposition in the 4–6-week 

group than in the control and Zol groups (Figure 3c,d), whereas the Zol group showed higher mineral 

apposition during weeks 6–8. These results indicated that increased bone-formation activity occurred 

after Zol and IFN-γ administration. 

2.3. Effect of Local IFN-γ and Zol Administration on Osteoclastogenesis and TNF-α and  

RANKL Expression 

The expression of tartrate-resistant acid phosphatase (TRAP), a marker of activated osteoclasts, was 

assessed at each time point. TRAP staining revealed numerous TRAP-positive cells in control-group 

tissue sections at six or eight weeks post-treatment, while TRAP staining was attenuated in the  

IFN-γ- and Zol-treated groups (Figure 4a). Inflammatory cytokines such as TNF-α modulate 

osteoclastogenesis. To investigate the mechanism whereby IFN-γ or Zol treatment suppressed 

osteoclastogenesis, we further evaluated immune responses in tissues surrounding the implants via 

immunostaining and quantitative reverse transcriptase-polymerase chain reactions (RT-PCR). Robust 

TNF-α and RANKL staining were observed at six and eight weeks post-transplantation in the control 

groups, while Zol and IFN-γ administration markedly reduced TNF-α and RANKL staining  

(Figure 4b,c). In agreement with the immunostaining results, the mRNA expression levels of the 

inflammatory cytokines Tnf-α and the osteoclastic cytokines Rankl and macrophage colony stimulating 

factor (M-csf) were significantly lower in tissues treated with IFN-γ and Zol. These results suggested 

that IFN-γ and Zol treatment both hindered osteoclastogenesis and inflammatory responses 

surrounding the implants. 
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Figure 4. Effect of Zol and IFN-γ administration on osteoclastogenesis and immune 

responses in defects treated with α-TCP/CS. (a) Tartrate-resistant acid phosphatase 

(TRAP) staining representing the presence of osteoclasts (TRAP-positive cells) in tissue 

sections; (b,c) Tumor necrosis factor alpha (TNF-α; purple) and receptor activator of 

nuclear factor-kappa B ligand (RANKL) expression (brown). Scale bars: 120 μm;  

(d) Expression of genes closely related to osteoclast differentiation and bone resorption 

(Rankl, Tnf-α, Il-1β, and M-csf). The data show the mean ± SD (n = 4). # Control vs. IFN-γ, 

* Control vs. Zol; *,# p < 0.05, **,## p < 0.01 (Tukey–Kramer method). 

3. Discussion 

Effective bone-regeneration scaffolds should be capable of osteoconduction, osteoinduction, and 

eventual biodegradation. Moreover, scaffolds for bone regeneration should mimic bone morphology, 

structure, and function. Natural bones are a complex assembly of type-I collagen nanofibrils and 

hydroxyapatite (HA). A drawback of using HA in bone-regeneration scaffolds is that it has a low 

biodegradation rate. The in vivo-degradation rate of TCP is higher than that of HA. In addition, α-TCP 

dissolves more easily in water than does β-TCP, even though they have identical chemical compositions [23]. 

In the present study, SEM, Fourier-transform infrared (FTIR) spectroscopy, and XRD results 

demonstrated that α-TCP/CS particles with a three-dimensional porous structure and anatomizing 

network were created using a dehydrothermal cross-linking method. 

In this study, we used a defect size of 9 mm in diameter, which can be considered critical for new 

bone formation in most defects. Micro-CT imaging showed that the defects were not completely filed 

with bone at six-weeks following α-TCP/CS implantation. In addition, the BMD and bone-volume 

values decreased from Week 6 to Week 8. This finding may be explained by evidence that excess  

post-implantation bone resorption correlates with TNF-α and RANKL over-expression. α-TCP/CS led to 

upregulated TNF-α and RANKL expression, which resulted in osteoclastogenesis of regenerated bone 
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tissue. TNF-α, a major chronic inflammatory cytokine, was shown to induce rheumatoid arthritis, 

osteoporosis, periodontal disease, and implantation failures [24]. A large area of TNF-α-RANKL-positive 

fibrotic tissue surrounding implants or invading regenerated bone was observed, along with numerous 

activated osteoclasts. Gretzer et al. found that TNF-α expression in the exudate was mild at 7 days, but it 

became significantly higher at 21 days post-implantation, with substantial fibrous repair occurring 

around the implanted materials [25]. TNF-α can increase the differentiation of RANKL-primed 

osteoclast precursors, activate bone resorption, and increase osteoclast survival. There is evidence  

that increased activation and differentiation of osteoclasts by particle-stimulated macrophages may 

serve important roles, as various findings have shown that supernatants from particle-stimulated 

macrophages can induce bone resorption in isolated murine calvaria in vitro [9]. 

Immune responses to material implantation trigger osteoclastogenesis and bone destruction. 

Understanding the relationship between osteoclastogenesis and implantation failure has led to 

investigations of new routes for therapeutic intervention. However, there is no approved drug therapy 

to prevent or inhibit material-induced osteoclastogenesis. Zol is used to treat metabolic bone diseases, 

such as osteoporosis, and inhibits the formation of ruffled borders, trafficking of lysosomal enzymes, 

and transcytosis of degraded bone matrix, which together block osteoclast functions. Currently, 

however, there is no evidence in the literature that these drugs can effectively treat implantation failure 

in patients. In this study, we demonstrated that locally Zol-injected bone defects with α-TCP/CS 

implantation exhibit significantly higher bone regeneration and decreased inflammatory cytokine 

expression, leading to a reduction in osteoclastogenesis in new bone formation. These findings indicate 

the potential of Zol treatment in facilitating successful material-implantation procedures. 

Inflammatory macrophage responses are initiated by material particles in bone defects, leading to 

increased RANKL and TNF-α production in fibrous and stromal cells. In our opinion, treating patients 

with local immunomodulatory agents that can modulate cytokine expression from macrophages is 

possible. The effects of RANKL and TNF-α may be down regulated by IFN-γ. IFN-γ is produced 

locally in the bone microenvironment mainly by cells of immune origin and mesenchymal stem cells, 

and it plays crucial roles in the regulation of a wide variety of innate and adaptive immune responses [26]. 

It has been shown that IFN-γ interferes with osteoclast differentiation induced by RANKL and directly 

inhibits TNF-induced osteoclastogenesis [15]. In addition, IFN-γ is reported to enhance immunosuppressive 

functions to protect implants against acute rejection [27] and to prevent excess fibrosis during wound 

healing [28]. In this study, we locally injected IFN-γ at the implantation sites, which led to enhanced 

osteogenic capacity and reduced bone resorption, suggesting that IFN-γ may also be effective in the 

treatment of material implants. 

4. Experimental Section 

4.1. Biomaterial Preparation 

Large and small α-TCP particles were prepared by pulverizing an α-TCP block with a continuous 

pore structure of 80% pores (Taihei Chemical Industrial Co., Ltd., Osaka, Japan). The median sizes of 

the large and small particles were 580.8 and 136.2 μm. The particles were mixed at 1:1 mass ratio. 

Collagen (Nippon Meat Packers, Osaka, Japan) was prepared from a lyophilized powder of pepsin-digested 
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atelocollagen isolated from porcine dermis. α-TCP particles of 150 mg were added to 1 mL 

homogenized collagen solution. This mixture was poured into plastic molds and immediately frozen to 

−80 °C and freeze-dried for 24 h. Then, the sponge-like materials underwent dehydrothermal treatment 

at 140 °C for 24 h in a vacuum drying oven (Yamato Scientific, Tokyo, Japan). Last, the α-TCP/CSs 

were sterilized using ethylene oxide gas at 40 °C. Collagen sponges prepared without α-TCP particles 

were prepared by the same method and used as a control [2]. 

4.2. Biomaterial Measurements 

The morphologies of particles were observed by SEM (5-kV, S-4800, Hitachi High Technologies, 

Tokyo, Japan). FT-IR spectra were acquired using a spectrometer (Spectrum One, Perkin-Elmer Inc., 

Waltham, MA, USA) with ATR accessories at a resolution of 4 cm−1 with 16 scans. Sample 

identification was determined by XRD-6100 powder X-ray diffractometry (Shimadzu Corp., Kyoto, 

Japan). Cu-Kα radiation generated at 40 kV and 40 mA. The scan rate was 4°/min with a step size of 

0.02° over a 2θ range of 10°–60°. 

4.3. Rat Calvarial-Defect Model 

A total of 28 male Sprague-Dawley rats (8 weeks old, 250–270 g, SHIMIZU Laboratory Supplies Co., 

Kyoto, Japan), which provided for 28 defect sites, were used for the implantation studies. The experimental 

protocol was approved by the Animal Care and Use Committee of Osaka Dental University 

(Admission Number: 14-05001). Three groups were prepared as follows: (i) no treatment control 

group (4-, 6-, 8-week groups; n = 4/group); (ii) Zol injection group (6- and 8-week groups;  

n = 4/group); and (iii) IFN-γ injection group (6- and 8-week groups; n = 4/group). A critically sized 

defect (diameter: 9 mm; depth: 1.0 mm) was created at the center of each rat skull. The α-TCP/CSs 

were implanted into defects and were covered using GTR membranes (Japan Gore-Tex Co., Tokyo, Japan). 

The operation was performed under strictly aseptic conditions. A pain reliever (Lepetan®, Otsuka 

Pharmaceutical, Tokyo, Japan) and a systemic antibiotic (Baytril®, Bayer, Leverkusen, Germany) were 

administered prophylactically by subcutaneous injection. Nine micrograms of IFN-γ (Bioss, Woburn, 

MA, USA; 4.5μg/mL) was locally and subcutaneously injected at the operation site (3 days/week for  

4 weeks after the operation) and Zol-group rats receiving local and subcutaneous injection (0.04 mg/kg) of 

Zol (100 μg/mL; Cayman Chemical Company, Ann Arbor, MI, USA) at the operation site once a week. 

Rats were injected with calcein (5 mg/kg; Wako Pure Chemical Industries Co., Osaka, Japan) was 

injected 3 days/week from 4 to 6 weeks post-implantation. Tetracycline (25 mg/kg; Wako Pure 

Chemical Industries Co., Osaka, Japan) was administered 3 days/week from 6 to 8 weeks post-implantation. 

4.4. Evaluation of Osteogenesis in Vivo 

4.4.1. Micro-CT and Analysis 

Calvarial bones were scanned with an SMX-130CT micro-CT scanner (65 kV, 90 mA; Shimadzu, 

Kyoto, Japan) immediately after the rats were euthanized. Calvarial bones were measured in  

3 dimensions, and their structural indices (voxel size: LX: 136; LY: 127 LZ 58) were calculated using 

a morphometric program (TRI/3D-BON; Ratoc System Engineering, Tokyo, Japan). 
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4.4.2. RT-PCR and Immunostaining Experiments 

Total RNA from each bone defect was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen, 

Hilden, Germany). RT-PCR was used to investigate the effects of injection on the expression of 5 genes, 

which were divided into 2 groups. Specifically, the genes were grouped as (i) those that are closely 

related to osteoclast differentiation and bone resorption (Rankl, M-csf, Tnf-α, and Il-1β) and (ii) one 

that is related to bone metabolism (Alp). Expression of 18S mRNA was evaluated using a Gene 

Expression Assay (#4310893E, ThermoFisher Scientific Inc., Waltham, MA, USA). The sequences of 

the primers used for RT-PCR are shown in Table 1. 

Table 1. Primers and probes for RT-PCR analysis. 

Gene Sequence #Probe Accession 

Rankl 
Forward 5ʹ-AGACACAGAAGCACTACCTGACTC-3ʹ 

#2 NM_057149 
Reverse 5ʹ-GGCCCACAATGTGTTGTA-3ʹ 

M-csf 
Forward 5ʹ-CAAGGACTATAAGGAACAGAACGAG-3ʹ

#55 NM_023981.4
Reverse 5ʹ-GAAATTCTTGATTTTCTCCAGCA-3ʹ 

Tnf-α  
Forward 5ʹ-GCCCAGACCCTCACACTC-3ʹ 

#119 X66539.1 
Reverse 5ʹ-CCACTCCAGCTGCTCCTC-3ʹ 

Il-1β 
Forward 5ʹ-TGTGATGAAAGACGGCACAC-3ʹ 

#78 NM_031512.2
Reverse 5ʹ-CTTCTTCTTTGGGTATTGTTTGG-3ʹ 

Alp 
Forward 5ʹ-GCACAACATCAAGGACATCG-3ʹ 

#77 NM_013059.1
Reverse 5ʹ-TCAGTTCTGTTCTTGGGGTACAT-3ʹ 

Immunostaining was used to detect TNF-α and RANKL expression in bone-defect sections. 

Endogenous peroxidase and alkaline phosphatase activities were blocked using a blocking solution 

(BLOXALL, Vector; Burlingame, CA, USA) for 10 min. Goat serum (5%, Vector; Burlingame, CA, USA) 

was applied for 30 min to block background staining in the sections. Sections were labeled with one of 

the following primary antibodies diluted in PBS for 30 min: (a) an anti-TNF-α rabbit polyclonal 

antibody diluted at 1:300 (Novus Biologicals; Littleton, CO, USA); or (b) an anti-RANKL goat 

polyclonal antibody diluted at 1:300 (Santa Cruz Biotechnology, Dallas, TX, USA). After a 5-min 

wash step, the sections were incubated with an anti-rabbit or anti-goat secondary antibody (Vector, 

Burlingame, CA, USA) for 30 min. Subsequently, the sections were washed for 5 min and processed 

using the ABC Kit (Vector; Burlingame, CA, USA). Peroxidase activity was detected with the 

following colors: (a) purple with TNF-α staining (VECTOR VIP, Vector, Burlingame, CA, USA);  

(b) brown with RANKL staining (ImmPACT DAB, Vector, Burlingame, CA, USA). Counterstaining 

was performed using toluidine blue (RANKL staining) or methyl green (TNF-α staining). 

4.4.3. Bone Histomorphometry 

Samples were fixed in 4% paraformaldehyde for 16 h. Four-micrometer-thick non-decalcified 

frozen sections were obtained by the Kawamoto method [29]. Osteogenesis dynamics were studied by 

observing fluorescently labeled sections from the 8-week group under an LSM700 laser-scanning 

microscope (Zeiss, Jena, Germany). The fluorophores were activated using lasers of different 

wavelengths, namely, 488 nm (calcein, blue) or 405 nm (tetracycline, green). 
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4.4.4. Histochemical Staining and Histological Observations 

Von Kossa, ALP, and TRAP staining were performed for histological studies. Von Kossa staining, 

using the von Kossa Method for Calcium Kit (Polysciences Inc., Warrington, UK), was performed for 

the bone tissue observations. TRAP and ALP staining was performed using the TRAP/ALP Kit (Wako 

Pure Chemical Industries Co., Osaka, Japan) for osteoclast identification and measuring osteoblast 

activities following transplantation. After staining, sections were observed with a BZ-9000 digital 

microscope (Keyence Co., Osaka, Japan). 

4.5. Statistical Analysis 

Statistical analysis was performed with Statcel3 software (OMS, Tokyo, Japan). For all 

experiments, values are reported as the mean ± SD. For comparisons between 3 groups, homogeneities 

of variance were evaluated by the Bartlett test. Since all data were homoscedastic, differences were 

evaluated by Tukey–Kramer method (a multiple-comparisons test for parametric data). A value of  

p < 0.05 was accepted as statistically significant. 

5. Conclusions 

Although α-TCP/CSs are osteoconductive materials that act as a space maintainer during bone 

formation, combination treatment with molecules that stimulate osteogenesis or inhibit osteoclastogenesis 

are needed to induce bone regeneration in large bone defects. In this study, we demonstrated that 

locally Zol- or IFN-γ-injected bone defects with α-TCP/CS implants exhibited significantly higher 

bone regeneration and decreased inflammatory cytokine expression, leading to a reduction in 

osteoclastogenesis in new bones. These data indicate that Zol and IFN-γ may have utility in mediating 

successful material implantation. Further studies are required to examine the therapeutic potential of 

Zol and IFN-γ administration, using different implant procedures and types. 
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