
INTRODUCTION

Periodontitis is an infection-driven chronic inflamma-
tory disease characterized by periodontal pocket for-
mation and alveolar bone resorption. It is one of the
most common chronic inflammatory diseases in aged
populations and affects almost 90% of the popula-
tion.1 A balance between bone resorption by osteo-
clasts and bone formation by osteoblasts determines
the level of bone mass.2 Inflammation-mediated bone
loss is a major feature of various bone diseases, in-
cluding chronic periodontitis, rheumatoid arthritis, and
osteoarthritis, and is caused by an imbalance in bone
remodeling that favors resorption. This imbalance is
caused by increased cytokines and mediators in the
inflamed tissue.3 Inflammatory cytokines produced by
immunoregulatory cells regulate the immune re-
sponses to periodontal bacteria and play a protective

and/or destructive role in disease progression.4 How-
ever, the mechanisms of periodontal bone resorption
remain to be established.

Bone remodeling is a physiological process that in-
volves bone formation and resorption. The two major
cell types responsible for bone formation and resorp-
tion are osteoblasts and osteoclasts.5 Bone homeo-
stasis results from tightly regulated activities of bone-
forming osteoblasts and bone-resorbing osteoclasts.
Therefore, the balance between these two cell types
is important for maintaining bone mass, and the dis-
ruption of this relationship leads to bone disorders
such as osteoporosis, rheumatoid arthritis, and peri-
odontal disorders.6 Usually, these pathological dis-
eases are characterized by over formation and/or acti-
vation of osteoclasts. Osteoclasts are multinucleated
giant cells formed by the fusion of monocyte/macro-
phage precursors, which are derived from hema-
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topoietic progenitors. Two soluble factors are essen-
tial cytokines for osteoclast development : macro-
phage colony-stimulating factor (M-CSF) and recep-
tor for activation of nuclear factor-κB (NF-κB)
(RANK) ligand (RANKL).7, 8 RANKL induces the sig-
naling essential for precursor cells to differentiate into
osteoclasts.9 M-CSF provides the proliferation of os-
teoclast precursor cells, maintains their survival and
stimulates the expression of RANK.10, 11

Binding of RANKL with its receptor RANK induces
the activation of tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6), which is linked to the
NF-κB and c-Jun N-terminal kinase (JNK) pathways.12

In addition, by an unclear mechanism, RANKL in-
duces c-Fos expression. Furthermore, calcium sig-
naling initiated by RANKL and its costimulatory recep-
tor is indispensable for the induction of nuclear factor
of activated T cells (NFAT) c1, a master gene of os-
teoclast differentiation.13 Previous studies have
shown that the coupling of c-Jun and c-Fos with
the NFAT family is important for transcriptional
events during osteoclastogenesis.14−16 The activation
of mitogen-activated protein kinases (MAPKs) results
in the phosphorylation of c-Jun and its association
with c-Fos to form the essential activator protein-1
(AP-1) transcription factor also involved in NFATc1 in-
duction.17−19 NFATc1 then regulates the transcription
of several target genes such as calcitonin receptor
(CTR), tartrate resistant acid phosphatase (TRAP),
matrix metalloproteinase 9 (MMP9) or cathepsin K,
which lead to the formation of bone resorption pits
during osteoclast differentiation.20

Interleukin-17A (IL-17A) is a proinflammatory cy-
tokine that is mainly secreted by activated T cells.21

However, it has recently been reported that IL-17A
can also be produced by several other innate immune
cell types, such as lymphoid tissue inducer cells, natu-
ral killer and natural killer T cells, macrophages and
Paneth cells.22 It has been reported that IL-17A in-
duces RANKL production by osteoblasts.23 In addi-
tion, recent evidence has indicated that IL-17A stimu-
lates RANKL gene expression in osteoblasts and in-
duces osteoclast differentiation in co-cultures of os-
teoblasts and bone marrow cells.7 Thus, IL-17A is a
crucial cytokine for osteoclastogenesis via the

RANK-RANKL system.
However, the direct effects of IL-17A on the differ-

entiation of osteoclasts and on the function of osteo-
clasts remains unclear. In this study, we attempted to
clarify whether and how IL-17A affects RANKL-
induced osteoclast differentiation in RAW264.7 cells
as osteoclast precursors. Here, we report a putative
inhibitory mechanism for RANKL-induced osteoclast
formation by IL-17A in RAW264.7 cells.

MATERIALS AND METHODS

Cell culture
We used the murine monocyte/macrophage cell line
RAW264.7 cells as osteoclast precursors that were
obtained from DS Pharma Biomedical (Osaka, Ja-
pan). RAW264.7 cells were cultured in minimal es-
sential medium alpha modification (α-MEM) (Wako
Pure Chemicals, Osaka, Japan) containing 10% fetal
bovine serum (FBS) (Nichirei Biosciences, Tokyo, Ja-
pan), 100 μg/mL penicillin, 100 μg/mL streptomycin
and 2 mM L-Glutamine (Wako Pure Chemicals). RAW
264.7 cells were incubated at 37°C under 5% CO2. Ac-
cutase (Innovative Cell Technologies, San Diago,
CA, USA) was used to detach the cells.

TRAP activity assay
RAW264.7 cells were seeded onto a 96-well plate at
a density of 3.0×103 cells/well and cultured for up to
3 days in α-MEM containing 10% FBS and IL-17A at
0, 5, 10 or 20 ng/mL in the presence of RANKL (10 ng
/mL). In some studies, RAW264.7 cells were preincu-
bated with the indicated concentration of SP600125
(JNK inhibitor) for 30 min at 37°C before incubation
with RANKL at 10 ng/mL. Osteoclast formation was
assessed by TRAP activity assay. The cells were
fixed with 10% formalin solution in phosphate buffered
saline (PBS) for 1 min and equal parts acetone/etha-
nol (Wako Pure Chemicals) for 30 sec. The cells were
then allowed to react with 50 mM sodium citrate and
10 mM tartaric acid (pH 4.6) containing 5 mM p-
nitrophenyl phosphate. The enzyme reactions were
terminated with an equal volume of 0.1 N sodium hy-
droxide, and absorbance was measured at 405 nm
with a SpectraMax M 5 Multi-Mode Microplate Reader
(Molecular Devices, Sunnyvale, CA, USA).
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Phosphorelation of JNK in RAW264.7 cells
RAW264.7 cells (2.0×106 cells/sample) were treated
with the indicated concentration of IL-17A in the pres-
ence of RANKL (10 ng/mL) for 15 min. Cells were
solubilized with lysis buffer containing 50 mM Tris-HCl
at pH 7.6, 0.5% TX-100, 300 mM NaCl, 5 mM EDTA,
10 μg/mL leupeptin, 10 μg/mL aprotinin, 1 mM phen-
ylmethylsulfonyl fluoride (PMSF) and 1 mM sodium
orthovanadate by gentle rocking for 30 min at 4°C. In-
soluble material was removed by centrifugation and
the supernatants were subjected to SDS-PAGE for
western blotting. Cell lysates were eluted by boiling in
SDS-containing sample buffer and fractionated by
SDS-PAGE (10% polyacrylamide gels).

Proteins were electrophoretically transferred to
PVDF membranes. The membranes were blocked
using 20% Blocking One (Nacalai, Kyoto, Japan) in 50
mM Tris-HCl at pH 7.5 and 150 mM NaCl overnight.
Membranes were incubated for 1 h with anti-phospho
JNK (Cell Signaling Technology, Danvers, MA,
USA). Horseradish peroxidase (HRP)-conjugated
secondary antibody (Anti-mouse IgG, HRP-linked
whole Ab sheep ; Merck Millipore, Darmstadt, Ger-
many) was used at a 1 : 2000 dilution and immunore-
active bands were visualized using Immobilon West-
ern Chemiluminescent HRP Substrate (Merck Milli-
pore). The images were analyzed using VersaDoc
5000 (Bio-Rad, Hercules, CA, USA). The membranes
were stripped and reprobed with anti-JNK (Cell Sig-
naling Technology) antibody. The results revealed
that equal amounts of JNK were created by lysates
obtained from each sample.

Expression of c-Fos from RAW264.7 cells
RAW264.7 cells (2.0×105 cells/sample) were treated
with the indicated concentrations of IL-17A in the
presence of RANKL at 10 ng/mL for 6 h. In a similar
way, cell lysates were used for western blotting. Mem-
branes were incubated for 1 h with anti-c-Fos (Cell
Signaling Technology). HRP-conjugated secondary
antibody (Anti-rabbit IgG, HRP-linked whole Ab
sheep ; Merck Millipore) was used at a 1 : 2000 dilu-
tion and immunoreactive bands were visualized using
Immobilon Western Chemiluminescent HRP Sub-
strate. The images were analyzed using VersaDoc

5000.

RESULTS

Effect of IL-17A on RANKL-induced TRAP activity
of RAW264.7 cells
To evaluate how IL-17A may control osteoclast physi-
ology, we investigated its action on the osteoclast pre-
cursors RAW264.7 cells. TRAP is a well-known en-
zyme that is widely acccepted as a histochemical
marker of osteoclasts. Its action can be significantly
elevated by RANKL stimulation.24 Initially, we investi-
gated the effect of IL-17A on TRAP activity of
RANKL-induced osteoclast differentiation in RAW
264.7 cells. RAW264.7 cells were cultured in the ab-
sence or presence of RANKL with the indicated con-
centration of IL-17A. TRAP activity was examined af-
ter 3 days stimulation. RAW264.7 cells were previ-
ously reported to differentiate into osteoclast-like
TRAP-positive multinuclear cells on stimulation with
RANKL. The enzymatic TRAP activity measured at
the end of the differentiation process was increased
by RANKL stimulation in RAW264.7 cells. When IL-17
A was present in the culture with RANKL, it decreased
the RANKL-induced TRAP activity of RAW264.7 cells
(Fig. 1). These results confirmed the potential of IL-17
A to suppress osteoclast differentiation in RAW264.7
cells.

Fig. 1 Effect of IL-17A on RANKL-induced TRAP activity of
RAW264.7 cells. RAW264.7 cells were seeded onto a 96-well
plate at a density of 3.0×103 cells/well and cultured for up to
3 days in α-MEM containing 10% FBS and IL-17 at 0, 5, 10
or 20 ng/mL in the presence of RANKL at 10 ng/mL. TRAP ac-
tivity was assessed by measuring absorbance at 405 nm. Val-
ues are expressed as the mean and standard deviation of trip-
licate experiments.
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JNK plays a role in RANKL-induced osteoclasto-
genesis
MAPKs (mainly including ERK, JNK and p38 MAPK)
are located at the downstream of the TRAF6 signal-
ling complexes, and play an important role in
RANKL-induced osteoclast differentiation by trigger-
ing a cascade reaction and up-regulating expressions
of the essential transcription factors c-Fos and NFATc
1. In this study we focused on JNK among the
MAPK. We investigated the effect of the JNK signal-
ing pathway on RANKL-induced osteoclast differen-
tiation. RAW264.7 cells were cultured with RANKL in
the absence or presence of SP600125, a specific in-
hibitor of JNK. Consistent with previous results, SP
600125 treatment significantly inhibited the TRAP ac-
tivity of RAW264.7 cells, which was stimulated by
RANKL, compared with non-treatment of RAW264.7
cells. Furthermore, inhibition of TRAP activity of RAW
264.7 cells after SP600125 treatment occurred in a
concentration-dependent manner (Fig. 2). It has been
shown that JNK participate in the regulation of
RANKL-induced osteoclast differentiation and that
RANKL-induced activation of early signaling path-
ways is important for osteoclast differentiation.25

IL-17A inhibited RANKL-induced phosphorylation
of JNK in RAW264.7 cells
RANKL is known to activate MAPKs (ERK, JNK and

p38), which play important roles in the differentiation
and formation of osteoclasts from osteoclast precur-
sor cells. To determine the intracellular mechanism
underlying the inhibition of osteoclast differentiation in
the presence of IL-17A, we assessed the effects of
IL-17A on RANKL-induced phosphorylation of JNK in
RAW264.7 cells by immunoblotting. The JNK activa-
tion states were determined by immunoblotting using
antibodies specifically directed against the phospho-
rylated forms of JNK, compared to data obtained with
antibodies directed against the unphosphorylated
states of the JNK. RANKL stimulation induced a
marked phosphorylation of JNK compared with the
situation of unstimulated RAW264.7 cells. The phos-
phorylation of JNK stimulated with RANKL was inhib-
ited by 100 ng/mL IL-17A (Fig. 3 upper panel). To en-
sure that equal amounts of JNK were obtained from
the lysates, the membranes were stripped and rep-
robed with anti-JNK antibody. The results revealed
that equal amounts of JNK were created by lysates
obtained from each sample (Fig. 3 lower panel).

IL-17A inhibited RANKL-induced c-Fos expres-
sion in RAW264.7 cells
Binding of RANKL to RANK activates several tran-
scription factors that are responsible for promoting os-
teoclastic gene expression. At the final stage of osteo-
clast differentiation, NFATc1 cooperates with AP-1 to
induce osteoclast-specific genes such as TRAP and

Fig. 2 Inhibition of SP600125 (JNK inhibitor) on RANKL-
induced TRAP activity in RAW264.7 cells.RAW264.7 cells
were seeded onto a 96-well plate at a density of 3.0×103 cells
/well. Cells were preincubated with the indicated concentration
of SP600125 (JNK inhibitor) for 30 min at 37°C before incuba-
tion with RANKL at 10 ng/mL and cultured for up to 3 days in
α-MEM containing 10% FBS. TRAP activity was assessed by
measuring absorbance at 405 nm. Values are expressed as
the mean and standard deviation of triplicate experiments.

Fig. 3 IL-17A inhibited RANKL-induced phosphorylation of JNK
in RAW264.7 cells. RAW264.7 cells (2.0×106 cells/sample) were
treated with the indicated concentration of IL-17A in the presence
of RANKL at 10 ng/mL for 15 min. Western blot analysis for
phospho-JNK was performed. The phosphorylation of JNK stimu-
lated with RANKL was inhibited by 100 ng/mL IL-17A (upper
panel). To ensure that equal amounts of JNK were obtained from
the lysates, the membranes were stripped and reprobed with
anti-JNK antibody. Equal amounts of JNK were applied from
lysates obtained from each sample (lower panel).
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calcitonin receptor. c-Fos plays an important role in
RANKL-induced NFATc1 expression by forming AP-
1 complexes with c-Jun.26 RANKL has been shown to
elevate the levels of c-Fos in osteoclast precursor
cells.27 Therefore, we examined the effect IL-17A had
on RANKL-induced expression of c-Fos in RAW
264.7 cells by western blot analysis. RAW264.7 cells
were cultured in the presence or absence of RANKL
with the indicated concentration of IL-17A for 6 h. After
incubation, the protein levels of c-Fos were deter-
mined by western blot analysis. As shown in Fig.4,
RANKL stimulation increased the expression of c-Fos
in RAW264.7 cells. Whereas RANKL augmented the
levels of c-Fos, IL-17A suppressed c-Fos expression
in a dose-dependent manner (Fig. 4).

DISCUSSION

Excessive RANKL signaling cascade enhances os-
teoclast differentiation and bone resorption activity,
which ultimately causes bone-destructive diseases.
Thus, the inhibition of osteoclast differentiation and/or
its function may be an effective approach to the treat-
ment of pathological bone loss. In this study, we found
that IL-17A could inhibit RANKL-induced osteoclast
differentiation in RAW264.7 cells. However, the pre-
cise intracellular mechanisms of the inhibitory action
of IL-17A were not clearly identified.

The IL-17 cytokine family is a recently discovered
group of cytokines. IL-17A, the original member of this
family, was first identified in 1995.28 The human IL-17
A gene product is a protein of 150 amino acids with a
molecular weight of 15 kDa, and is secreted as a disul-

fide linked homodimer of 30−35 kDa glycoprotein.29

The other members, IL-17 B to IL-17 F, were subse-
quently identified based on their homology to IL-17.30

The IL-17 cytokine family, IL-17A to IL-17 F, appear to
be critical players in host defence responses and in-
flammatory diseases. Considerable data support the
role of these proteins in innate and adaptive immu-
nity.31 Several studies have indicated that IL-17A is a
proinflammatory cytokine crucial for osteoclastic bone
resorption in the presence of osteoblasts.32 IL-17A
has been shown to promote osteoclast differentiation
indirectly through the induction of IL-1, TNF-α , and
RANKL expression.33

While IL-17A is expressed by several leukocytes,
such as T-cells and neutrophils, its receptor is ex-
pressed in all tissues examined to date.34 IL-17 recep-
tor families consist of five subtypes : IL-17 RA, IL-17
RB, IL-17 RC, IL-17 RD and IL-17 RE.29 They share
partial sequence homology to IL-17 RA, which is a
single-pass transmembrane protein of approximately
130 kDa.29 It has a long cytoplasmic tail with approxi-
mately 500 amino acids not found in any other cy-
tokine receptor family, suggesting that they belong to
a unique cytokine receptor family.35 Members of the
IL-17 family are also homodimeric and have been
shown to bind and signal through both homodimeric
and heteromeric counterstructures.36 IL-17 RA and
IL-17 RC form a heterodimer for mediating the signals
of IL-17A and IL-17 F.37 We confirmed the expression
of IL-17 RC on the RAW264.7 cells by FACS analysis
(data not shown). However, the direct effects of IL-17
A on the differentiation of osteoclast precursors into
osteoclasts and on the function of osteoclasts re-
mains unclear. We found direct effects of IL-17A on
the osteoclast differentiation of RAW264.7 cells.

MAPKs have been implicated as key regulators of
various cellular responses, including cell prolifera-
tion, apoptosis, differentiation and migration.38 It has
been shown that three well-known MAPKs, ERK,
JNK, and p38, are activated in the RANKL signaling in
osteoclast precursor cells39 and RAW264.7 cells.40

The treatment of cells with p38 or JNK specific inhibi-
tors decreased RANKL-induced osteoclastogenesis,
suggesting that p38 and JNK play an important role in
osteoclast formation.14, 40 Here, we found that SP

Fig. 4 IL-17A inhibited RANKL-induced c-Fos expression in
RAW264.7 cells. RAW264.7 cells (2.0×105 cells/sample) were
treated with the indicated concentration of IL-17A in the presence
of RANKL at 10 ng/mL for 6 h. Western blot analysis for c-Fos ex-
pression was performed. IL-17A suppressed c-Fos expression in
a dose-dependent manner.
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600125 could significantly reduce TRAP activity in
RANKL-induced RAW264.7 cells. This result sup-
ports the notion that the activation of JNK plays an im-
portant role in RANKL-induced osteoclastogenesis.
Furthermore, IL 17A has been shown to suppress the
TRAP activity in RAW264.7 cells induced by RANKL
stimulation. In our study, IL-17A down-regulated the
phosphorylation of JNK in RANKL-stimulated RAW
264.7 cells. These results suggest that the inhibition
of RANKL-induced osteoclast differentiation stimu-
lated by IL-17A may be involved in the JNK signaling
pathway.

NFATc1, in association with AP-1, a complex of c-
Jun and c-Fos,14, 15 is known to regulate the transcrip-
tion of the genes involved in osteoclast differentia-
tion.41 The activation of MAPKs results in the phos-
phorylation of c-Jun and its association with c-Fos to
form the essential AP-1 transcription factor also in-
volved in NFATc1 induction.17, 18 NFATc1 was one of
the key transcription factors following RANKL stimula-
tion, and regulated many osteoclast-specific genes,
such as cathepsin K, matrix metalloproteinase 9
(MMP9) and TRAP.41 Moreover, NFATc1 was shown
to be required for in vivo osteoclastogenesis.20, 23 In ad-
dition, RANKL-induced NFATc1 expression is abro-
gated in c-Fos-deficient mice,41 indicating that NFATc
1 is downstream of c-Fos during osteoclast differen-
tiation.42 From these findings, NFATc1 is considered
a master transcription factor for osteoclastogenesis.26

c-Fos plays an important role in RANKL-induced
NFATc1 expression by forming AP-1 complexes with
c-Jun.26 RANKL has been shown to elevates the lev-
els of c-Fos in osteoclast precursor cells.11, 27, 28 In this
study, we confirmed that RANKL elevate the levels of
c-Fos in RAW264.7 cells and that IL-17A significantly
inhibits RANKL-induced c-Fos, suggesting that c-Fos
is important for the IL-17A mediated inhibitory effect
on osteoclast formation.

Taken together, we found that IL-17A inhibited the
RANKL-induced osteoclast differentiation in part by
attenuating the RANKL-induced phosphorylation of
JNK, and by reducing the RANKL-induced expres-
sions of c-Fos. Our findings provide new insights into
mechanisms of IL-17A-induced inhibition of osteo-
clastogenesis. Therefore, we think that IL-17A might

possibly be used in the development of a therapeutic
drug for diseases that destroy bone.
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