A histological study of mineralised tissue formation around implants with 3D culture of HMS0014 cells in Cellmatrix Type I-A collagen gel scaffold in vitro

By

Aiko MORISHITA, Shunji KUMABE, Michiko NAKATSUKA and Yasutomo IWAI

Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan

–Received for Publication, November 25, 2014–

Key Words: Turn over, mesenchymal stem cells (MSCs), 3D collagen scaffold, GBR tissue

Summary: We cultured HMS0014 Yub621b cells within a 3D collagen gel scaffold (Cellmatrix Type I-A) and aimed to study the fate and contribution of human bone-derived mesenchymal stem cells (MSCs) in the guided bone regeneration (GBR)-engineered tissue which has developed around the titanium (Ti) test dental implant (IP) in vitro. The light microscopy (LM) and transmission electron microscopy (TEM) results of the peri-IP tissue indicated that collagen fibrils of the Cellmatrix Type I-A gel were accumulated and fabricated to provide a 3D meshwork for proliferation and differentiation of the HMS0014 cells in the top (cell) layer; mineralisation of the GBR tissue had commenced since day 1 and became markedly deposited between days 7 and 14 of the experiment. TEM observation revealed sedimentation of cement line at the periphery of the interwoven Cellmatrix fibres and fibrils in the ECM scaffold of the GBR tissue; matrix vesicle-mediated and appositional collagen-mediated mineralisation were identified in the peri-IP ECM scaffold. The fine structure study of the plurimorphic osteoblast(Ob)-like osteogenic cells demonstrated numerous membranous organelles related with vesicular trafficking, secretion and endocytosis in the cytoplasm; well-developed cytoskeleton networks and intercellular junctional complexes were also observed. The specimens on fluorescence immunohistochemistry (IHC) by confocal laser-scanning microscopy (LSM) showed the expression of LC3 and Cx43 associated with autophagic-lysosomal degeneration pathway and signal conduction mediated with gap junctions (GJS) in maintaining tissue homeostasis of the Ob-like cells which grew and degenerated in the 3D scaffold. Results from this in vitro study suggest that Ob-like HMS0014 cells actively regulate turnover of the peri-IP ECM to recapitulate the development and formation of osteoid tissue-engineered material which might contribute to augment osseointegration around the dental implant.
nal (dimension = 30 µm × 90 µm to 100 µm × 200 µm) cells sending out prominent lamellipodia and filopodia within 180 min culture; we observed that the proliferating and differentiating Ob-like cells were more expansively adhered on the surface of anodic-oxidized (AO) Ti alloy discs. In addition, we demonstrated the expression and co-localisation of CD51 (the αv/β3 integrin: ITGA5, ITGB3, an interfacing specific receptor protein) and F-actin (filamentous actin cytoskeleton) in the matured Ob-like cells by immunohistochemistry (IHC) visualised using fluorescent microscopy.)

There have some studies on GBR with osteogeneic cells seeded on 3D scaffolds that enhanced cell-biomaterial interactions to support growth and differentiation of cultured mesenchymal cells. As we have observed that the establishment of bone-to-implant direct contact (BIC) interfaces was initiated with attachment of pre-Ob cells which secreted non-collagen ECM proteins to enhance the sedimentation with a layer of calcified afibrillar cement line, and then the phenomenon was followed with additional crystal growth and collagen assembly to facilitate matrical mineralisation in the GBR peri-IP tissue to attain an appositional process of peri-IP contact osteogenesis. In the present in vitro study, we cultured HMS0014 Yub621b cells with anodic-oxidized Ti dental IPs (AO-IPs) in the Cellmatrix Type I-A gel that developed a substance essentially similar to the peri-IP tissue observed in our previous studies.

Materials and Methods

Immature HMS0014 : Yub621b (Human bone-derived mesenchymal, osteogeneic lineage cells; Riken BRC) cells were filtered, centrifuged and incubated/maintained in POWEREDBY10 (Glyco Technica Ltd., Sapporo, Japan) supplemented with 1% antibiotic-antimycotic agent (100 units/mL penicillin + 100 µg/mL streptomycin; Nacalai Tesque, Kyoto, Japan) in cell culture 75 cm² flasks (TPP, Switzerland) at 37°C in humid air with 5% CO₂ for 24h.

Histological studies

1. Light microscopy (LM)

Test IPs with surrounding mineralizing tissue (a visually opaque layer) were dissected from the cultures, fixed with 4% paraformaldehyde, dehydrated and embedded in Technovit 7200 VLC (Heraeus Kulzer GmbH & Co. KG, Wehrheim, Germany). The samples were sectioned with EXAKT BS-300CP-A Band Saw Machine and MG-400CS Microgrinding Machine (MEIWAFOSIS, Tokyo, Japan) by using the Cutting-Grinding Technique. Subsequently, the specimens were prepared for light microscopy (LM) study by an Olympus BX41 LM connected with a FX380 system (Olympus, Tokyo, Japan).

On the other hand, some of the dissected peri-IP tissue were immersion-prefixed (1/2 Karnovisky’s fixatives), post-fixed (1.0% OsO₄), embedded in EPON 812 (TAAB, Berkshire, UK), trimmed and semithin sectioned with diamond knives on an ultratome (ULTROTOME; LKB, Stockholm, Sweden), and then prepared for LM survey specimens to select areas for the ultrathin sections.

2. Transmission electron microscopy (TEM)

The Epon 812 embedded specimens (the controls and experimentals) were ultrathin-sectioned with diamond knives using the ULTROTOME, picked up on copper grids, double electron stained (uranyl acetate and lead citrate), and then examined and photographed with a Hitachi H-7100 TEM (Hitachi, Tokyo, Japan).

3. Fluorescence immunohistochemistry (IHC) by confocal laser-scanning microscopy (LSM)

Some frozen-sectioned specimens subjected to acetone fixation were washed with PBS (5 min, 3 times), blocked...
Osteogenesis of peri-implant tissue in vitro

10% NORMAL GOAT SERUM, 15 min; Vector Laboratories, Inc., Burlingame, CA, USA) and processed in the following methods:

1) Immunolocalisation of autophagosome formation in Ob-like cells:

Some specimens were washed and treated with anti-microtubule-associated protein 1 light chain 3 (anti-LC3) primary antibody (Anti-LC3, Rabbit-Poly Antibody; Novus Biologicals, LLC, Littleton, CO, USA; 1:400 dilution, 2h). After washing with PBS, the specimens were treated with Alexa Fluor 488 goat anti-rabbit IgG [H+L] (excitation wave length: 495 nm, fluorescence wavelength: 519 nm; Molecular Probes, Inc., Eugene, OR, USA; 1:400 dilution, 1h), and were washed with PBS again following the conventional methods.

2) Investigation of the gap junctions (GJs) related with signal conduction and turnover of Ob-like cells:

Other specimens were treated with NORMAL GOAT SERUM blocking solution, the specimens were reacted with primary antibody of Connexin 43 (Cx43) Antibody (Cell Signaling Technology, Inc., Danvers, MA, USA). After PBS washing, the specimens were stained with the Alexa Fluor 488 goat anti-rabbit IgG [H + L] secondary antibody and then washed again with PBS.

Subsequently, all the specimens for LC3 and Cx-43 immunolocalisation were treated with RNASE PANCREATIC (AMRESCO, Solon, OH, USA; 1mg/mL in PBS, 30 min) to denature the RNA in the tissue, washed with PBS and then counterstained with propidium iodide (PI) DNA stain (excitation wave length: 530 nm, fluorescence wavelength: 615 nm; Molecular Probes; 1.0mg/mL in distilled water, 30 min, room temp) to identify the cell nuclei. The double-stained specimens were PBS-washed, mounted in VECTASHIELD MOUNTING MEDIUM (Vector Laboratories) and examined with an Olympus personal LSM (OLYMPUS FLUOVIEWS BX50; argon ion laser, excitation wavelength: 488 nm (CH1), filters: BA510F and BA530RIF; HeNe ion laser, excitation wavelength: 543 nm (CH2), filters: BA590 and BA565IF; Fluoview 2.0.32. Olympus).

Histological findings

We have performed preliminary studied of the peri-IP opaque tissue in the top/cell layer of the experimentals by LM and TEM. The LM of the grounded specimens (Fig. 2) and semithin sections (Fig. 3a) demonstrated adherence of osteogeneic induced-mesenchymal stem cell (MSC) and sedimentation of cement line matrix on the IP-ECM interface and at the periphery of Cellmatrix fibres that enhanced collagen-mediated mineralisation to initiate IP osteointegration by the contact osteogenesis phenomenon (Figs. 2 and 3a). In the top layer, the survey LM observed that many pleomorphic cells (dimension ≈ 10 µm × 70 µm) were widely dispersed in the ECM scaffold comprising many faintly stained fibrillar content and mineralisation loci (Fig. 3b). Furthermore, the TEM elucidated appositional mineralisation on the non-collagenous cement line of the ECM scaffold (Figs. 3c & 3d). Results of the preliminary experiment suggested that the ECM scaffold provided a 3D woven meshwork for the tissue-engineering procedure of culturing HMS0014 Ob-like cells within the Cellmatrix collagenous scaffold.

Hence, in the present study we conducted an investigation into the fate and contribution of the osteogeneic induced-HMS0014 bone-derived MSCs in the GBR-engineered tissue which has developed around the dental IP...
Fig. 2. LM of day 14 osseointegration *in vitro* (Olympus BX41/FX380 system). Fig. 2a LM of ground-sectioned AO-IP. High magnification of the peri-AO-IP tissue (Figs. 2b–d) shows attachment of Obs (▲), sedimentation of an afibrillar cement line (➡), and collagen-related ECM mineralisation (△) to obtain a peri-IP osteogenesis.

Fig. 3. Preliminary experimental study (day 21). Fig. 3a LM of a semithin section showing sedimentation of cement line matrix on the periphery of Cellmatrix scaffold (☆). Fig. 3b LM indicates that pleomorphic cells (*) are widely dispersed in the ECM scaffold comprising many faintly stained fibrillar content and mineralisation loci (↑). Figs. 3c, d The TEM shows sedimentation of an afibrillar cement line (▲) at the periphery of Cellmatrix scaffold (☆) and collagen-mediated ECM mineralisation (◆), and therefore attains a direct osteogenesis of tissue-engineering tissue on the Cellmatrix Type I-A 3-D scaffold.
TEM of HMS0014 cells and the ECM in the cell layer

1. The control group (non-inducing cells 3D-cultured in type I collagen gel)

The dendritic spindle-shaped non-inducing MSCs were widely dispersed in the extracellular matrix (ECM). The cells extended pseudopodia-like structures, which further sent out many long and slender cytoplasmic processes characteristically ensheathing reticular fibres (diameter (d) = 1–3 μm) consisted of finely-scattered collagen fibrils (d ≈ 50 nm, indistinct band interval) and amorphous materials; the cells were interconnected to make a cellular meshwork in the extracellular matrix (ECM) of the loose connective tissue structure (Figs. 4a & 4b).

The active MSCs contained an indented and ovoid-shaped nucleus finely distributed with hetero/eu chromatin, and the cells had a high nucleus-to-cytoplasm (N/P) ratio. The cytoplasm consisted of a small amount of Golgi complexes (the Golgi apparatus) and enlarged rough endoplasmic reticulum (rER) studded with electron dense material, abundant oval and elongated tubular mitochondria possessed dense matrices and distinct cristae, and a few phagosome-mediated lysosomes; the cytosol was rich in ribosomes (Fig. 4a). We observed that the Cellmatrix collagen networks in the ECM were composed mainly of fine fibrils (d = 10 nm, band interval= indistinct) intermingled with a few thicker (d = 15–30 nm, band interval = 20 nm) fibrils (Fig. 4c).

2. The experimental group (osteogeneic-induced cells 3D-cultured in Cellmatrix Type I-A collagen gel)

(1) Day 3 specimens:

The HMS0014 cells differentiated into Ob-like cells which showed a bulging cell body with extended, flat cytoplasm characteristically rich in lysosomes; the cells closely intercellularly junctioned (Fig. 5a). Many mitochondria in longitudinal and cross sections showed orthodox configuration with condensed matrix were observed in the cytoplasm (Figs. 5a, 5b & 5c). The TEM also demonstrated distribution of well-developed rER and Golgi apparatus, and small smooth-surface (d ≈ 150 nm) and coated vesicles (r ≈ 150–180 nm) nearby and at the cell membrane (Figs. 5a & 5b). Many vesicles were identified to be closely related with either lysosomes in the cytoplasm or nascent collagen of the ECM (Figs. 5a, 5b & 5c). These structures were organelles supporting the stable and maturation models for vesicular transport mechanisms concerning constitutive pinocytosis and secretion, as well as receptor-mediated endocytosis of the Ob-like cells.

On the other hand, at the vicinity to the plasma
Fig. 5. TEM of the experimental group (day 3 experimental). Fig. 5a The Ob-like cells have a bulging cell body showing low N/P ratio. The cytoplasm contains well-developed endoplasmic reticulum (ER) and Golgi apparatus (G), and many mitochondria (M). The cells are intercellularly junctioned (▲). Both matrix vesicle(MV)- and collagen-mediated mineralisation events are found at the periphery of Ob-like cells (circled areas). Fig. 5b The TEM shows an Ob-like cell and the ECM consisting of fibrils, calcosphere and mineralisation loci (↑). Figs. 5c, d In the vicinity of the plasma membrane, either microapocrine secretion of membranous matrix vesicles (MV: d = 40–300 nm) or distribution and accumulation of collagen type I fibrils (*: d = 25–40 nm, banding: 50–60 nm) extending towards the central ECM are observed. Fig. 5e In the central region of the intercellular ECM, distribution of Cellmatrix Type I-A collagen fibrils (■: thick fibrils d = 15–48 nm) with indistinct bandings (20 nm) is observed. Fig. 5f Calcification loci (↑) formation (1.0 × 1.0 ~ 2.0 × 5.0 µm²) closely related with the Cellmatrix Type I-A collagen scaffold meshwork are observed.
membrane, either microapocrine secretion of MVs (d = 40–300 nm) or distribution and accumulation of thin collagen type I fibrils (d = 25–40 nm, band interval = 50–60 nm) extending towards the central portion of the ECM were observed; MV- and subsequent collagen-mediated mineralisation adjacent to the Ob-like cells were demonstrated (Figs. 5c & 5d). In the centre of the ECM, about 2–5 µm distant from the neighboring cells, distribution of Cellmatrix Type I-A collagen fibrils (d = 15–48 nm) with indistinct fine band intervals (20 nm) was found; collagen-mediated mineralisation (d = 100–280 nm) and calcification loci formation (1.0 µm × 1.0 µm to 2.0 µm × 5.0 µm) closely related with the Cellmatrix Type I-A collagen scaffold meshwork were also found (Figs. 5b, 5e & 5f).

(2) Day 7 specimens:

The mature Ob-like HMS0014 cells (cell body size = 8 µm × 20 µm to 10 µm × 50 µm) extended cytoplasmic processes exhibiting structural surface modification of many microvilli (Figs. 6a & 6b). In the cytoplasm, the endoplasmic reticulum (ER) and Golgi apparatus (G) are well developed. Many mitochondria (M) in longitudinal and cross sections showing orthodox configuration with condensed matrix are observed. Paraplasms of small smooth-surface vesicles (△) distributed nearby at the cell membrane are observed to be organelles providing for vesicular trafficking of the Ob-like cells. Fig. 6c Small smooth-surface vesicles (△) distributing nearby at the cell membrane, coated vesicles (↑), microapocrine secretion of MVs and mineralisation of the ECM (circled areas) are demonstrated. Figs. 6d, e The centre of the ECM is mainly distributed with Cellmatrix Type I-A collagen fibrils (■: d = 10–40 nm, band interval = indistinct to 20 nm); collagen-mediated mineralisation (d = 100–280 nm) and subsequent calcospherites and calcification loci (↑) formation closely related with the Cellmatrix meshwork are evident in TEM observations.
closely related with electron-dense lysosomes which were also characteristically abundant in the day 7 Ob-like cells (Fig. 6a, 6b & 6c).

It was near to the plasma membrane, MV- and collagen-mediated mineralisation arose spatially and structurally by the nucleation phenomena (Fig. 6a, 6c & 6d). On the other hand, the centre of the ECM were mainly distributed with Cellmatrix Type I-A collagen fibrils (d = 10–40 nm, band interval = indistinct to 20 nm); collagen-mediated mineralisation (d = 100–280 nm), and subsequent calcospherites and calcification loci formation were evident in TEM of the Cellmatrix meshwork (Fig. 6d & 6e).

(3) Day 14 specimens:

The day 14 HMS0014 cells cultured with Cellmatrix Type I-A showed similar TEM findings to the day 7 specimens; abundant cytoplasm distributed with well-developed morphoplasm accompanied with the presence of numerous lysosomes was identified to be the intracellular structures regulating vesicle traffic of the Ob-like cells (Fig. 7a). At the periphery of the cells, many vesicular budding of MVs and accumulation of collagen type I fibrils (d = 25–40 nm, band interval = 50–60 nm) were found. Furthermore, the occurrence of both matrix vesicle- and collagen-mediated mineralisation events adjacent to the Ob-like cells was demonstrated in the ECM (Figs. 7b & 7c).

The ECM was rich in collagen fibrils and calcification loci of different sizes (1.0 µm × 1.0 µm to 10 µm × 10 µm; Fig. 7b). In the central region of the ECM sealing the space between neighboring HMS0014 cells, MV-mediated mineralisation showing needle-like crystallite deposition, subsequent calcospherite formation and accretion (180 µm × 240 nm to 10 µm × 10 µm), and collagen-mediated mineralisation along Cellmatrix Type I-A fibres...
(4) Day 21 specimens:
The day 21 cells showed similar histology with the days 7 and 14 specimens; TEM observed that they were cells abundant in morphoplasm. However, some Ob-like cells with nuclear envelopes had the perinuclear cisternal space dilated and filled with condensed substance. The nucleus was morphologically characterized with disintegrating nucleolemma showing dilation of nuclear pores to envelop condensed chromatin and many autophagic vacuoles (Fig. 8a). The histology indicated that Ob-like cells in the day 21 growing tissue-engineered material were entering the terminal phase of autophagic degeneration, a type of non-apoptotic programmed cell death. GJS connecting degenerative cells and adjacent cells were evident (Figs. 8a & 8b). Exocytotic vesicles, as well as membranous MVs were demonstrated at the periphery cytoplasm and cell membrane (Fig. 8c). On the other hand, the fine structure examination showed that the ECM was abundantly distributed with bundles of collagen fibrils and calcification loci (Figs. 8d & 8e). The TEM also revealed MV- and Type 1 collagen-mediated calcification in the ECM; Cellmatrix Type I-A collagen fibrils were hardly identified in the day 21 specimens (Figs. 8d & 8e).

The day 21 osteogeneic-induced Ob-like cells spread and were intercellularly connected with many fine cytoplasmic protrusions (Fig. 8a). In the abundant cytoplasm, it was rich in kinds of membranous organelles and ribosomes, and the cytosol was filled with a well-developed cytoskeletal network of microfilaments (d ≒ 3–6 nm), intermediate filaments (d ≒ 10 nm) and microtubules (Figs. 8a, 8c, 8e & 8f).

Fluorescence IHC by LSM

The results were summarised and demonstrated the protein expression related with autophagic-lysosomal degeneration pathway and cell death signal conduction mediated with GJS of Ob-like bone-derived MSCs (Table 1; Figs. 9a & 9b, 10a & 10b).

1. LC3 autophagy-related protein expression

The autophagic vacuole marker protein LC3 was not immunolocalised in the day 3 controls (Fig. 9a). However, the expression of LC3 was evident in the days 3, 7, 14 and 21 experimental osteoproducive Ob-like cells (Fig. 9b).

2. Cx43 GJS protein expression

The GJS are type of surface domains essentially related with modulation of cell death, signal conduction and turnover of the Ob-like cells.

Cx43 expression was observed in HMS0014 cells of both the controls and experimental (Fig. 10a). The LSM results indicated that the number of GJS between the adjacent Ob-like cells have increased over time of experiment (Fig. 10b).

The present fluorescence IHC by LSM indicated that there was autophagic-lysosomal degeneration pathway modified with cell death signal conducted of neighbouring Ob-like cells that maintained tissue homeostasis by regulating the life and death of the bone-derived MSCs in the growing peri-IP tissue-engineering material.

Discussion

Several studies on dental implant (IP) osseointegration have elucidated that peri-IP bone bonding began with osteoinduction allowing for attachment and subsequent differentiation of osteogeneic lineage cells to initiate osteoconduction to facilitate the direct bone-to-implant contact (BIC) of IPs3, 4, 6, 9, 12, 15, 18, 20–22, 29, 30, 34). Nevertheless, the studies have emphasized that the development of focal contacts of the attached osteogeneic cells essentially mediated the IP surface substrate responses to affect cell spreading and signaling and thereby modified contact osteogenesis at the cell-substratum interface1, 3, 4, 6, 12, 15, 19, 20, 35–39). Previously, we have studied the histochemical properties (e.g., by ALPase activity, Ca volume, osteocalcin volume studies) and osteoconduction of mouse KUSA/A1 (JCRB/HSRRB) and human HMS0014 Yub621b (Riken BRC) osteogeneic lineage MSCs in monolayer and 3D cultures, and then cultured the cells on titanium (Ti) discs with different surface substrates (i.e., anodic oxidation, hydroxyapatite coating, precision blasting). The results revealed that the immature bone-derived MSCs were condition-induced to actively proliferate, migrate and spread to acquire focal adhesions and intercellular connections with well-developed lamellipodia (extended sheet-like cytoplasmic protrusions supported with a meshwork of branched cytoskeletal proteins) and filopodia (finger-like protrusions supported with a parallel array of microfilaments assembled in long bundles) within 180 minutes, and were differentiated into mature osteoblast (Ob)-like cells during three days of culture; the SEM study observed that HMS0014 cells were more expansively adhered on the anodic-oxidized (AO) Ti discs. Furthermore, fluorescent immunomicroscopy findings revealed co-expression of F-actin (actin filament, a cytoskeleton protein) and CD51 (the αv/β3 integrin: ITGA V , an interfacing specific receptor protein) in the differentiated Ob-like cells8,11.

The integrin family of cell adhesion receptor molecules found in cell anchoring junctions has been elucidated to be the trans-membrane linker (anchoring) protein which actively transduces signals across the plasma membrane by tying cytoskeletal protein anchors (e.g., actin filaments) to ECM proteins with focal adhesions40, 41. On the other hand, there have been studies of
Fig. 8. TEM of the experimental group (day 21 experiments). Fig. 8a The nucleolamellar shows dilated nuclear pores and perinuclear cisternal space; the disintegrating nucleolamella envelopes many enlarged autophagic vacuoles (↑) (L: lysosome, M: mitochondrion). Fig. 8b The TEM shows the GJS (↑) connecting adjacent Ob-like cells. Fig. 8c Exocytotic vesicles (↑), as well as membranous MVs are demonstrated at the periphery cytoplasm and cell membrane. Figs. 8d, e The TEM shows that the ECM is abundantly distributed with bundles of collagen fibrils (↑) and calcification loci (↑). The TEM reveals MV- and Type I collagen-mediated calcification (↑) in the ECM; Cellmatrix Type I-A collagen fibrils are hardly identified in the day 21 specimens. Fig. 8f The day 21 cells are rich in kinds of membranous organelles (e.g., M: mitochondrion, L: lysosome, ▲: vesicle), ribosomes and a well-developed cytoskeletal network (↑).
Ob adhesion properties on biomaterials that elucidated the expression of integrin adhesion receptors involving in Ob-material interactions was essentially modified according to the surface characteristics of the biomaterials. The studies also elucidated that Obs would proliferate and differentiate into cells showing lamellipodia and filopodia with enhanced expression of F-actin filaments coupling with large focal contacts to adhere to the osteoinductive substratum; the IP surface substrate responses vice versa played active roles in events that governed not only osteoinduction (adherence and spreading, migration, proliferation, maturation and modulation of the Ob-like cells) but also the development of focal adhesion structures which mediated contact osteogenesis at the direct BIC interface1, 3, 4, 6, 12, 15, 20, 35, 37–39, 42, 43). In contrast, there has been a study demonstrating that inappropriate cell-matrix interactions might evoke signals transducted from type I collagen fibrils (e.g., of the ECM or scaffold) into surrounding cells through integrin, thereby inducing disoriented cell death to ensure the polarity of cells.

Figs. 9 & 10. Fluoresence IHC by LSM. The LC3 autophagy-related protein and Cx43 GJS protein expression. The expression of autophagic vacuole marker protein LC3 expression and Cx43 GJS protein is not immunolocalised in the controls (Figs. 9a, 10a), but is evident in the experimental osteoprotective Ob-like cells (Figs. 9b, 10b) (represented by day 3 specimens).
The study surmised that apoptosis played the important cell death mechanism in physiological developmental processes or under pathological conditions\(^{42}\).

Some histological studies have indicated that certain chemical and physical signals occurring at the focal adhesions were transmitted to the cell body and subsequently shared with neighboring cells via intercellular junctions (e.g., adherence, gap junctional intercellular communication)\(^{44–49}\). On the other hand, the architecture of actin microfilamentous networks build up a F-actin cortex which was essential for the maintenance and regulation of cell shape and the generation of mechanical forces in cell migration, as well as the development of stress fibres to couple with focal adhesion plaques for transmission of forces towards the substrate and scaffolds\(^{6, 42, 49}\). Many other studies have elucidated that intracellular cytoskeletal elements were organised to be tension-bearing structures of beams (microtubules) and cables (micro- and intermediate filaments), giving structural support to hold and regulate cell shape by resisting buckling due to compressive forces and filament fracture, as well as a dynamic 3D structure to carry out cellular movements and convey information/signals about the microenvironment of the cells\(^{6, 42, 49–51}\). Our previous SEM studies have demonstrated that the actively proliferating and differentiating Ob-like HMS0014 cells adhered to and spread well on the surface of tested Ti discs and IPs under inducing conditions\(^{11, 32}\). In the present TEM study, we observed that the mature Ob-like HMS0014 cells contained many non-membranous cell organelles of microfilaments, intermediate filaments and microtubules in the cell body and peripheral cytoplasm. We speculated that the distribution of the F-actin cytoskeleton corresponds with the actin stress fibres, which have fibrillar ends co-localised with CD51 to represent focal adhesion formation of the HMS0014 cells under inducing conditions\(^{11, 32}\).

The present TEM fine structure study revealed that the well-developed cytoskeleton and abundant membranous organelles seemed to be general characteristics of the mature Ob-like HMS0014 cells; a well-developed Golgi apparatus, rER, sER, polymorphic mitochondria in orthodox configuration containing dense matrix and other morphoplasm were evident in the cells. We also observed that distribution of coated vesicles and endosomes were spatially closely related with numerous electron-dense lysosomes, and identified vesicular transport and trafficking mechanisms of the osteoinduced cells\(^{2, 52–54}\). On the other hand, the changes in the number and size of mitochondria present in a cell are directly related to the cell’s metabolic activity, and mitochondria undergo reversible ultrastructural transformations between a condensed and an orthodox conformation in relationship to either the osmotic balance between cytosol and the matrix or respiratory state of the cell. A previous study has elucidated that mitochondria with matrix of slow metabolite diffusion rate in the condensed state were dominant in a tissue with high level of oxidative phosphorylation\(^{55}\). However, it has been noted that the onset of phosphorylation was accompanied by a reduction of the matrix volume of orthodox mitochondria, but there is no evidence that the decrease in matrix volume affected the phosphorylation efficiency\(^{56}\). Nevertheless, other studies have reported that volume-dependent regulation of matrix protein packing may modulate metabolite diffusion and, in turn, mitochondrial metabolism of cells\(^{57–59}\).

Table 1. Results

<table>
<thead>
<tr>
<th>Protein expression</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 3</td>
<td>Day 7</td>
</tr>
<tr>
<td>LC3</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Cx43</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

Alexa Fluor 488 goat anti-rabbit IgG [H + L] (excitation wavelength: 495 nm, fluorescence wavelength: 519 nm and PI DNA stain (excitation wavelength: 530 nm, fluorescence wavelength: 615 nm)
In the present study, LC3 localisation was used as a marker of autophagosome formation in the Ob-like cells of the tissue-engineered material. The fluorescence IHC by LSM detected the expression of LC3 expression in experimental Ob-like cells. Meanwhile by using TEM for observation of Ob-like cells, we observed that day 21 experimentals had the nuclear enveloped with dilated perinuclear cisternal space filled with condensed substance, and the nucleus was morphologically characterized with disintegrating nucleollemma showing dilation of nuclear pores to envelop condensed chromatin and many enlarged autophagic vacuoles. The histological studies observed that day 21 Ob-like cells in the growing GBR tissue were entering the terminal phase of non-apoptotic programmed cell death (PCD) - the type 2 physiological cell death showing autophagic degeneration, thereby indicated immunohistochemical and ultrastructural evidence for progressive autophagic degeneration resulting in PCD of the Ob-likes cells in the GBR tissue.

In addition, the present TEM and LSM observed that other than adherens junctions, the cells were connected by GJS for allowing the transmission of electrical impulses among their neighbouring cells. GJS have been elucidated to be channels playing an important function in maintaining cellular energy homeostasis and cell survival by spreading cell-killing signals initially generated by a single cell that spontaneously initiated apoptosis into healthy non-apoptotic neighbours. Thus, the GJS regulated important roles in the life and death of cells by moderating cell death signal conduction to migrate the bystander effect between contacting cells. Some studies have further stated that the recycling function of autophagy through a lysosomal degradation pathway was a decisive factor not causing the unaffectected healthy bystander cells to also die and thereby maintained cellular energy homeostasis and survival. Moreover, PCD has been elucidated to be a self-limited survival strategy rather than a primary or irreversible death execution program.

Tissue engineering for GBR by the placement of osteogenic cells within matrices to recapitulate the development and formation of biological implantation tissue has been proposed to be a predictable strategy for a decrease in the need for recruitment of cells at the defect site. Previously, we have in vitro studied osseointegration of a peri-IP tissue-engineered material by mouse KUSA/A1 bone marrow-derived MSCs cultured with Cellmatrix Type I-A Gel. The GBR method engineered mouse osteogenic MSCs in the 3D collagen networks to initiate contact osteogenesis at the cell-substrate interfaces followed with mineral apposition of the growing peri-IP tissue to acquire osteoid tissue which provided bone-to-implant direct contact (BIC) without intervening soft tissue at the interfaces.

Taken together, in the present study by embedment of the AO-IP with cell clusters containing human osteogenic HMS0014 Yub621b BMSCs in the Cellmatrix Type I-A Gel fashioned from natural material, we investigated histological events associated with growth of a biological tissue-engineered osseointegrative material to surround the dental IP. Consequently, the TEM and LSM results elucidated that the active Ob-like HMS0014 cells contained the morphoform providing for the vesicular transport and trafficking mechanisms, as well as structures related with osteoconduction of the cells in osseointegration of Ti IPs. Moreover, we identified the LC3 autophagic gene expression and configuration of autophagy-mediated programmed cell death to maintain cellular energy homeostasis and cellular survival of the Ob-like cells distributed in the peri-IP mineralising tissue. The study concluded that the present GBR method osteoinduced human bone-derived MSCs within a 3D ECM scaffold to actively regulate a homeostatic microenvironment for commencing osteoconduction of the peri-IP tissue in vitro. Furthermore, we surmised that the tissue-engineered osteoid tissue might be utilised as a supplementary material for the IP in the host drilled socket, thereby employs a biocompatible and biodegradable BIC tissue which would be remolded and modeled to optimize functional osseointegration for the endosseous implant therapy.

Acknowledgements

This work was partly supported by a grant-in-aid for scientific research (C) (24592976) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The human mesenchymal stem cells line, HMS0014 (Yub621b), was provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. The study was performed using the Laboratory Animal, Morphological Research and Tissue Culture Facilities in the Institute of Dental Research, Osaka Dental University. The study results were presented at the 56th Annual Meeting of Japanese Association for Oral Biology in Fukuoka on September 27, 2014.

References

55) Kassik A, Safiulina D, Zharkosky A, Veksler V. Regulation of
54) Watanabe T, Sakai Y, Hira Y, Bochimoto H, Hosaka M. Molecular
53) Nimura A, Egawa K. High resolution scanning electron micros-
52) Thyberg J, Friberg U. Electron microscopic enzyme histochemical
50) Guo Y, Martinez-Williams C, Rannels DE. Gap junction-microtubu-
49) Lim JY, Donahue HJ. Biomaterial characteristics important to
48) Yap AS, Koves E.M. Direct cadherin-activated cell signaling: a
45) Shapiro F. Variable conformation of GAP junctions linking bone
cells: a transmission electron microscopic study of linear, stacked
linear, curvilinear, oval, and annular junctions. Calcif Tissue Int
44) Watanabe T, Sakai Y, Hira Y, Bochimoto H, Hosaka M. Molecular
cellular basis for the secretory granule biogenesis in endocrine
43) Watanabe T, Sakai Y, Hira Y, Bochimoto H, Hosaka M. Cellular and
cellular basis for the secretory granule biogenesis in endocrine
42) Nimura A, Egawa K. High resolution scanning electron micro-
scopy of formative bone surface by endochondral ossification. J
41) Lang RD, Bronk JR. A study of rapid mitochondrial struc-
77:134–147.
40) Scalettar BA, Abney JR, Hackenbrock CR. Dynamics, structure,
and function are coupled in the mitochondrial matrix. Proc Natl
39) Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochon-
drial membrane potential regulates matrix configuration and cyto-
chrome c release during apoptosis. Cell Death and Differ 2003;
10:700–717.
38) Dąbrowska E, Balunowska M, Letko R, Szynaka B. Ultrastruc-
tural study of the mitochondria in the submandibular gland, the
pancreas and the liver of young rats, exposed to NaF in drinking
37) Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM.
Detection of autophagy in tissue by standard immunohistoche-
35) Shapiro F. Variable conformation of GAP junctions linking bone
cells: a transmission electron microscopic study of linear, stacked
linear, curvilinear, oval, and annular junctions. Calcif Tissue Int
34) Thyberg J, Friberg U. Electron microscopic enzyme histochemical
studies on the cellular basis of matrix vesicles in the epiphasial
33) Lang RD, Bronk JR. A study of rapid mitochondrial struc-
77:134–147.
32) Scalettar BA, Abney JR, Hackenbrock CR. Dynamics, structure,
and function are coupled in the mitochondrial matrix. Proc Natl
31) Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochon-
drial membrane potential regulates matrix configuration and cyto-
chrome c release during apoptosis. Cell Death and Differ 2003;
10:700–717.
30) Dąbrowska E, Balunowska M, Letko R, Szynaka B. Ultrastruc-
tural study of the mitochondria in the submandibular gland, the
pancreas and the liver of young rats, exposed to NaF in drinking
29) Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM.
Detection of autophagy in tissue by standard immunohistoche-